Tech Focus: NUS Showcases InfinityGlove Smart Gaming Glove Prototype

The InfinityGlove contains ultra-sensitive microfibre sensors that can translate hand gestures into in-game commands, allowing users to play first-person shooters such as Battlefield V without the need for a traditional controller or a keyboard.

The InfinityGlove was developed by a team of NUS researchers led by Professor Lim Chwee Teck (left). With him are two members of the research team, Dr Yeo Joo Chuan (centre) and Dr Yu Longteng (right). Photo: National University of Singapore.

The InfinityGlove was developed by a team of NUS researchers led by Professor Lim Chwee Teck (left). With him are two members of the research team, Dr Yeo Joo Chuan (centre) and Dr Yu Longteng (right). Photo: National University of Singapore.

Simply flex your index finger to fire your weapon and rotate your wrist clockwise to move forward. Immersive controls have always been a pipedream in the world of gaming but is steadily becoming reality.

Editor’s Comments

This is an interesting and innovative project.

Currently each finger of the glove contains one microfibre sensor that can differentiate two states – straightened or curled – due to the difference in conductivity of the liquid metal within the fibre in the two states.

So the overall status of the glove should be readable as a five-digit binary.

Would be good to add one more to the wrist to include bending of the wrist.

And in the longer term, I can think of two ways of improving the resolution of the sensing.

One would be to implement multiple sensors per strand of microfibre.

Another would be to weave multiple microfibre strands to provide a matrix detection pattern for a snapshot of the state of each sensor.

That could probably come in useful as a grid sensor to monitor the distribution of stresses/deformation on a surface etc.

A team of researchers from the National University of Singapore (NUS), led by Professor Lim Chwee Teck, has developed a smart glove – called ‘InfinityGlove’ – that allows users to mimic a variety of in-game controls using simple hand gestures.

While the concept of controlling a game using your hands is not new, the main problems have always been weight and flexibility.

The current generation of smart glove type controllers available on the market are usually bulky and rigid as they rely on conventional sensors which put the hard in hardware.

The InfinityGlove overcomes existing problems with weight and flexibility by weaving ultra-thin, highly sensitive microfibre sensors into the material of the glove.

These sensors are not only lightweight and accurate, but also fulfil the role of wires thus reducing the need for additional wiring.

Currently the prototype weighs about 40 grams, and is flexible and comfortable.

More details below from the press release.

Precise and quick gesture-based remote control

Currently, each InfinityGlove contains a total of five thread-like sensors, one for each finger.

The InfinityGlove is embedded with thread-line microsensors to produce accurate three-dimensional positions of a moving hand, allowing users to mimic a variety of in-game controls using simple gestures. Photo: National University of Singapore.

The InfinityGlove is embedded with thread-line microsensors to produce accurate three-dimensional positions of a moving hand, allowing users to mimic a variety of in-game controls using simple gestures. Photo: National University of Singapore.

This network of sensors can interface with the game software to produce accurate three-dimensional (3D) positions of a moving hand. Various gestures made by the user’s hands are then mapped to specific inputs that are found on a regular controller. To date, the team has mapped a total of 11 inputs and commands which will allow users to play games such as Battlefield V.

The application of this microfibre sensor technology is the breakthrough innovation that enables the InfinityGlove to accurately map finger gestures for human-machine interaction.

“We were very much inspired by the need to remotely control tasks with just hand gestures. Current commercially available technology is not very responsive and causes a strain on the user’s hands after prolonged use due to their bulky setup. We envision that gesture-based control using our lightweight smart gloves can bring us one step closer to a truly immersive interface between humans and machines,” said Professor Lim Chwee Teck, Director of the NUS Institute for Health Innovation & Technology.

The sensor is made up of a thin and stretchable rubber-like microfibre, about the same thickness as a strand of human hair, that is filled with a conductive liquid metal.

A small electric current runs through the conductive liquid metal, creating an electrical reading signal that changes when the fibres are bent and as the liquid metal is displaced.

This microfibre sensor was developed by the team back in 2017 and was previously used to measure pulse and bandage pressure, but they have since adapted it for the smart glove by improving the strain sensing capabilities.

When linked up to the team’s proprietary software, the sensors can rapidly translate the gestures via electrical signals into command inputs at a speed that is almost the same as pressing a button on the keyboard.

The InfinityGlove can be wirelessly connected to a computer and is lightweight.

Redefine gaming, rehabilitation and robotic control

The team took two years to develop a working prototype of the InfinityGlove and is also producing the microfibre sensors commercially for other applications.

Other applications for the InfinityGlove include hand rehabilitation for patients as gamification motivates patients to continue their hand exercise regimes through immersive play, and medical professionals can track the progress of their patient’s joint movements at the same time.

Tags: , , , , , , , , ,

2 Responses to “Tech Focus: NUS Showcases InfinityGlove Smart Gaming Glove Prototype”

  1. Koh Wei Chien says:

    wa POWER sia… infinity glove. i want to try!

Leave a Reply